Hard Thresholding Pursuit Algorithms: Number of Iterations
نویسندگان
چکیده
The Hard Thresholding Pursuit algorithm for sparse recovery is revisited using a new theoretical analysis. The main result states that all sparse vectors can be exactly recovered from compressive linear measurements in a number of iterations at most proportional to the sparsity level as soon as the measurement matrix obeys a certain restricted isometry condition. The recovery is also robust to measurement error. The same conclusions are derived for a variation of Hard Thresholding Pursuit, called Graded Hard Thresholding Pursuit, which is a natural companion to Orthogonal Matching Pursuit and runs without a prior estimation of the sparsity level. In addition, for two extreme cases of the vector shape, it is shown that, with high probability on the draw of random measurements, a fixed sparse vector is robustly recovered in a number of iterations precisely equal to the sparsity level. These theoretical findings are experimentally validated, too.
منابع مشابه
Hard Thresholding Pursuit: An Algorithm for Compressive Sensing
We introduce a new iterative algorithm to find sparse solutions of underdetermined linear systems. The algorithm, a simple combination of the Iterative Hard Thresholding algorithm and of the Compressive Sampling Matching Pursuit or Subspace Pursuit algorithms, is called Hard Thresholding Pursuit. We study its general convergence, and notice in particular that only a finite number of iterations ...
متن کاملAlternating direction algorithms for ℓ0 regularization in compressed sensing
In this paper we propose three iterative greedy algorithms for compressed sensing, called iterative alternating direction (IAD), normalized iterative alternating direction (NIAD) and alternating direction pursuit (ADP), which stem from the iteration steps of alternating direction method of multiplier (ADMM) for `0-regularized least squares (`0-LS) and can be considered as the alternating direct...
متن کاملComparison of threshold-based algorithms for sparse signal recovery
Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal M...
متن کاملSparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants
We review three recovery algorithms used in Compressive Sensing for the reconstruction s-sparse vectors x ∈ CN from the mere knowledge of linear measurements y = Ax ∈ Cm, m < N. For each of the algorithms, we derive improved conditions on the restricted isometry constants of the measurement matrix A that guarantee the success of the reconstruction. These conditions are δ2s < 0.4652 for basis pu...
متن کاملGPU accelerated greedy algorithms for compressed sensing
For appropriate matrix ensembles, greedy algorithms have proven to be an efficient means of solving the combinatorial optimization problem associated with compressed sensing. This paper describes an implementation for graphics processing units (GPU) of hard thresholding, iterative hard thresholding, normalized iterative hard thresholding, hard thresholding pursuit, and a two-stage thresholding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013